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Abstract. We present a numerical study of long-term calculation of a barotropic North-
Atlantic Ocean circulation model. The aim of the paper is twofold. First, we present an
efficient semi-Lagrangian projection scheme for an eddy resolving circulation model and
second, we use the so called proper orthonormal decomposition technique to calculate a
finite dimensional subspace that contains the dynamics of the solution. Using a Galerkin
projection on this subspace, we reduce the high dimensional system, obtained by the ap-
plication of the finite element method to discretize in space the equations of the model, to
a low dimensional system and, thus, we can calculate the bifurcation diagram using the
software of AUTO having as a control parameter the horizontal eddy viscosity coefficient.
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1 Introduction

On a large scale, the ocean circulation system is driven by wind-stress, heat and fresh
water fluxes. The wind-stress is the main driving mechanism to the circulation of the
ocean upper layer, which is the water layer between the sea surface and a depth of about
few hundred meters, this circulation is also known as ocean surface circulation; whereas
heat and fresh water fluxes are responsible of the thermohaline circulation, which is the
component of the ocean circulation system with time scales ranging from decades to cen-
turies and spatial scales extending over the whole ocean basin, so that, the thermohaline
circulation has a strong influence on the long time scales of climate variability. The surface
circulation determines the sea surface temperature and is involved in short time scales of
climate variability. The main feature of the wind driven circulation at mid-latitudes is
the presence of a double gyre phenomenon with a strong boundary current at the lower
gyre, such boundary current extends as a jet to the interior of the ocean. These gyres
have a typical horizontal scale of about one thousand kilometers and are persistent and
dominant. They represent the seasonal and inter-annual variability of large scale ocean
surface circulation at mid-latitudes, and they also transfer potential energy.

Wind-driven circulation is basically a non-linear phenomenon and as such, there have
been many authors who have studied it. Thus, Veronis (1963) was the first to analyze
multiple steady states and transition to periodic solutions in the lower gyre. Bryan (1963)
was the first to apply a numerical formulation to study the time dependent solution of
a barotropic quasi-geostrophic ocean driven by steady wind stress. More recently, Jiang
(1995) calculates a bifurcation diagram for a wind-driven double gyre shallow water model
as a control parameter takes different values. The diagram shows the transition of the
ocean circulation regime from multiple steady states to periodic and aperiodic states.
Berloff and Meachan (1997) study the bifurcation structure of a barotropic wind-driven
model for a small mid-latitude ocean basin. Chang et al. (2001) trace the bifurcation
diagram for a barotropic double-gyre mid-latitude quasi-geostrophic ocean and Simonet
et al. (2001) have done a similar study in a shallow water model for the wind-driven
ocean circulation with numerical simulations carried out for an idealized North Atlantic
with a constant depth. The main goal of this article is to show the behavior of numerical
solutions when long time computations are performed in a barotropic ocean including
bottom topography, realistic boundaries and real climate wind stress.

2 The Model

The ocean model is a barotropic (constant density ρ0) mid-latitude β-plane ocean
domain Ω of variable depth H and free surface D = D ∪ ∂D, which is driven by climatic
wind stress acting upon the sea surface D. For such a model, the system of Primitive
Equations that govern the general ocean dynamics [14] can be integrated in the vertical
to yield the following 2D Navier-Stokes equations
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D(u)

Dt
+ f(u)⊥ + H∇p− νh∆(u) + γ(u) = τ ,

div(u) = 0
in D × (0, T ] (1)

with the following initial and boundary conditions:

{
u = 0 in D for t = 0

u |∂D= 0 and u · n |(−H)= 0 ∀t. (2)

We explain now the notation used in (1) and (2). Let uH(x, t) be the horizontal velocity
vector in the Primitive Equations which satisfies

div
∫ 0

−H
uHdz = 0 in Ω× [0, T ],

and on the solid boundaries Γsof Ω

uH |Γs= 0,

where Γs is composed by the lateral boundaries Γl and the bottom topography H(x, y), H ≥
H0, with H0 > 0 being a constant , we define the vector u as

u =
∫ 0

−H
uHdz. (3)

In (2) n denotes the unitary outward normal vector. The function f , known as the Coriolis
parameter, represents the planetary vorticity of the motion due to the rotation of the
Earth. The mathematical expression for f , assuming that the Earth is a perfect sphere,
is

f = 2Ω cos θ,

where Ω = 7.2526× 10−5s−1 denotes the angular velocity of the Earth and θ (0 ≤ θ ≤ π)
is the colatitude. The β-plane approximation (see [17] for a physical justification and
mathematical details) consists of projecting the spherical surface on its tangent plane
at a mid-latitude point (ψ0, θ0) ∈ D, and defining on such a plane a local Cartesian
coordinate system (x, y) with origin at (φ0, θ0) such that

x1 :=
φ− φ0

a
and x2 :=

θ − θ0

a
,

where a is the radius of the Earth and the coordinates (x, y) being positive in the east
and north directions, respectively. In doing so, one approximates the true value of the
Coriolis parameter f by its linear approximation about the origin as

f = f0 + βx2 (4)
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where

f0 = 2Ω cos θ0 and β =
1

a

df

dθ
|θ=θ0 (5)

So that, the Primitive Equations formulated in spherical coordinates are approximated by
the formulation in the local Cartesian coordinates of the tangent plane. It is considered
that this methodology of simplifying the Primitive Equations is a first order approximation
for studying the large scale ocean dynamics, which is only valid at mid-latitudes, say,
20o ≤ θ ≤ 50o.

The total derivative is then given by

D(u)

Dt
=

∂(u)

∂t
+ (

u

H
· ∇)(u) (6)

The external forcing terms are represented by the steady wind stress
τ (x) = (τ 1(x1, x2), τ 2(x1, x2)). νh is a constant horizontal eddy viscosity coefficient and
γ is a constant bottom friction coefficient.

The model (1)-(2) is dynamically equivalent to the barotropic streamfunction-vorticity
model used by Munk (1950) and Munk and Carrier (1950) to understand the role that
both the horizontal dissipation and Coriolis force play in the westward intensification of
the wind driven ocean circulation. The same model, but with the non linear terms, was
used by Bryan (1963) to carry out one of the early numerical simulations of the ocean
circulation. One can prove existence and uniqueness for the weak solution to (1) and (2)
in the subspaces H1 and V1 defined as follows

D(D) = {ϕ ∈ C∞
0 (D},

V1(D) = {v ∈ D(D)2 : divv = 0 and v · ∇H = 0}
H1 = V1(D)

L2(D)2

and V1 = V1(D)
H1

0 (D)2

.

(7)

From a mathematical point of view it seems to be restrictive seeking a solution in the
subspace V1. One can remove such a restriction by reformulating the way the viscous
terms are derived in (1). Defining the vertically averaged velocity vector

u =
u

H
, (8)

we obtain the following equations for the barotropic ocean model





H
Du

Dt
+ fHu⊥ + H∇p− div(νhH∇(u)) + γHu = τ ,

div(Hu) = 0
in D × (0, T ] (9)

subjected to the initial and boundary conditions
{

u = 0 in D for t = 0
u |∂D= 0 and u · n |(−H)= 0 ∀t. (10)
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In (9) the total derivative is given by

Du

Dt
=

∂u

∂t
+ u · ∇u. (11)

We end this section by establishing the existence and uniqueness of the solution (u, p)
to (9)-(10) in the spaces

V(D) = {v ∈ D(D)2 : divHv = 0 }
H = V(D)

L2(D)2

and V = V(D)
H1

0 (D)2 (12)

and defining the bilinear form

a : H1
0 (D)2 ×H1

0 (D)2 → R
a(u, v) = γ(Hu, v) + νh(H∇u,∇v)

(13)

where (·, ·) denotes the L2 inner product, and the trilinear form

d : H1
0 (D)2 ×H1

0 (D)2 ×H1
0 (D)2 → R

d(u, v, w) =
∫
D(Hu · ∇v) · wdx.

(14)

It is easy to show the following properties: (i) a(u, v) is a continuous and coercive bilinear
form; (ii) d(u, v, w) = −d(u,w, v), this property implies that d(u, v, v) = 0 and (iii) there
exists a constant C such that | d(u, u, v) |≤ C ‖ u ‖L2(D)2‖ u ‖H1

0 (D)2‖ v ‖H1
0 (D)2 . See [19]

for other well known inequalities satisfied by | d(u, u, v) | We are now in a condition to
define the weak solution to problem (9)-(10).

Definition 1. A weak solution to equations (9) and (10) is a function u ∈ L2(0, T ; V )∩
L∞(0, T ; H) satisfying ut ∈ L2(0, T ; V )́ and

〈Hut, v〉+ (fHu⊥, v) + d(u, u, v) + a(u, v) = (τ , v) ∀v ∈ V.

We establishes without proof the existence and uniqueness of the weak solution [9].
Theorem 1(Weak solution). If τ ∈ L2(D) the weak solution u is unique and

u ∈ C(0, T ; H).

3 The numerical method

To compute the approximate solution to (9)-(10) we discretize in time and space the
velocity and pressure. For space discretization we use the finite element method because
of its good properties to deal with the irregular shape of the ocean coastlines and its
flexibility to make local mesh refinements. As for time discretization we choose a semi-
Lagrangian projection scheme.
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3.1 Finite element approximation: generalities

Given the real parameter h0, 0 < h0 < 1, let h be a space discretization parameter
such that 0 < h < h0. To compute a numerical solution of (9) and (10) we generate a
quasi-uniform partition Dh in D composed of elements Tj with Lipschitz boundary Γj

that satisfy the following conditions: (i) Let NE be the number of elements in Dh, then
D = ∪

j
T j, j = 1, .., NE. (ii) For 1 ≤ j, l ≤ NE, j 6= l,

T j ∩ T l =





Pi, a mesh point, or
Γjl, a common side, or
∅, empty set otherwiae.

(iii) There is a positive constant µ such that for all Tj,
dj

hj

> µ, where dj denotes the

diameter of the circle inscribed in Tj and hj is the diameter of Tj, such that h = maxj hj.
Next, we associate a family of finite element spaces with the partition Dh. To do so, we
consider an element of reference T̂ ⊂ R2 such that for each element Tj of Dh we can define
a one-to-one mapping Fj : T̂ → Tj such that if P̂m(T̂ ) is the set of polynomials p̂(x̂) of
degree ≤ m defined on T̂ , then for each Tj there exists a set

Pm(Tj) = {p(x), x ∈ Tj(x) : p(x) = p̂(F−1
j (x))}.

We now define the family of conforming finite element spaces

Vh = {vh ∈ (C0(D))d : vh |Tj
∈ P2(Tj), 1 ≤ j ≤ NE}

Qh = {qh ∈ C0(D) : qh |Tj
∈ P1(Tj), 1 ≤ j ≤ NE}

Vh0 = {vh ∈ Vh : vh |∂D1= 0}.
(15)

We also consider the space
Sh = Qh ∩ L2

0, (16)

where
L2

0 = {q ∈ L2(D) :
∫

D
qds = 0}. (17)

The finite element spaces have the following approximation properties.

A1) (Inf-sup) There exists a positive constant β independent of h tal que

inf
qh∈Qh

sup
uh∈Vh

b(uh, qh)

‖ uh ‖1

≥ β ‖ qh ‖,

where the bilinear form b : Vh0 ×Qh → R is defined by

b(uh, qh) = −
∫

D
qhdiv(Huh)dx. (18)

6



Rodolfo Bermejo Bermejo? and Pedro Galán del Sastre

A2) For all u ∈ Hr+1(D), q ∈ Hr(D)/R, 1 ≤ r ≤ m, there exist positive constants K
such that

inf
uh∈Vh

{‖ u− uh ‖ +h ‖ u− uh ‖1≤ Khm+1 ‖ u ‖m+1,

and
inf

qh∈Qh

‖ q − qh ‖≤ Khr ‖ q ‖Hr/R .

Let MV and MP the number of nodes in the velocity and pressure meshes respectively,
then vh ∈ Vh and qh ∈ Qh are expressed as

vh =
∑MV

k=1 Vkφk,

qh =
∑MP

l=1 Qlψl,
(19)

where {φk}MV
k=1 {ψl}MP

l=1 denote the global basis of Vh and Qh respectively. The functions φk

and ψl are characterized by satisfying φk(xj) = δkj and ψl(yi) = δki; {yi}MP
i=1 and {xj}MV

j=1

being the sets of nodes for pressure and velocity respectively in the partition D̄h. Before
proceeding to the description of the semi-Lagrangian projection scheme we write the
formulation of the semi-discrete finite element solution to problem (9)-(10). To this end,
we shall consider the restriction of the bilinear form a and the trilinear form d onto the
finite element space Vh0 ⊂ H1

0 . Thus, for (uh, vh) ∈ Vh0 × Vh0

a(uh, vh) = γ(Huh, vh) + νh(H∇uh,∇vh) (20)

This bilinear form defines a discrete operator Ah : Vh0 → Vh0 such that for all vh ∈ Vh0

Ahuh, vh) = a(uh, vh). (21)

Similarly, we associate with the bilinear form b the operator Bh : Vh0 → Qh and its
transpose Bt

h : Qh → Vh0 defined as

(Bhuh, qh) = b(uh, qh) = (Bt
hqh, uh), ∀uh ∈ Vh0 and ∀qh ∈ Qh. (22)

We also need the bilinear discrete operator Dh(·, ·) associated with the restriction of the
trilinear form d onto Vh0, the discrete Coriolis operator Ch and the orthogonal projector
Ph onto Vh0. Thus, for any wh ∈ Vh0

Dh : Vh0 × Vh0 → Vh0

(Dh(uh, vh), wh) = d(uh, vh, wh)
(23)

(Chuh, wh) = (Hfu⊥h , wh) (24)

and
Ph : L2(D) → Vh0

(Phv, wh) = (v, wh)
(25)
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Note that d(uh, vh, wh) = −d(uh, wh, vh) and d(uh, vh, vh) = 0. Also, it is worth noticing
that (Cuuh, uh) = 0. We are now in a position to formulate the semi-discrete approximate
solution (uh(t), ph(t)) to problem (9)-(10). Find uh : (0, T ] → Vh0 and ph : (0, T ] → Qh

such that

H
Duh

Dt
+ Ahuh + Chuh + Bt

hph = Phτ

Bhuh = 0
uh(0) = 0.

(26)

Here, H
Duh

Dt
= H

∂uh

∂t
+ Dh(uh,uh) is an approximation in Vh to the total derivative

operator H
Du

Dt
.

3.2 The semi-Lagrangian projection scheme

There are several difficulties to compute a numerical solution to (9)-(10), being the
most relevant the following ones: (i) the nonlinearity of the model represented by the term
u ·∇u; (ii) the incompressibility condition or equivalently, the condition div(Hu) = 0, and
(iii) the Coriolis term that can cause instabilities when the viscous terms are small. To
be efficient, we have chosen a pressure-correction projection scheme implemented in a
semi-Lagrangian framework. Thus, let IN := {t0, t1, .., tN} be a uniform partition of the
interval [0, T ] with step-length ∆t. A fully discrete approximate solution to (9) and (10)
is the pair of mappings uh : In → Vh0 and ph : IN → Qh such that for n = 1, 2, ...

un
h =

MV∑

k=1

Un
k φk (27)

and

pn
h =

MP∑

j=1

P n
j ψk. (28)

The semi-Lagrangian pressure-correction projection scheme combines a semi-Lagran-
gian method to discretize the total derivative operator, with a pressure-correction scheme
[11] that calculates the solution (un+1

h , pn+1
h ) in a two step procedure. In the first one, an

intermediate velocity ũn+1
h is calculated by solving a Burger´s problem, so that, ũn+1

h is
not divergence free but it satisfies the boundary condition, this implies that ũn+1

h ∈ Vh0;
in the second step, (un+1

h , pn+1
h ) are calculated, now un+1

h is divergence free but it does
not satisfy the boundary conditions, so that un+1

h /∈ Vh0. The semi-Lagrangian scheme is
applied in the first step to discretize the total derivative operator along its characteristic
curves X(x, s; t). If the velocity vector u(x, t) is Lipschitz continuous then X (x, s, t) is
the unique solution to the differential equation

dX

dτ
= u(X(x, s; τ), τ)

X(x, s; s) = x
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or equivalently, for τ in the interval (t, s)

X(x, s; t) = x−
∫ s

t
u(X(x, s; τ), τ)dτ . (29)

Now, setting t = tn, s = tn+1 and approximating H
Duh

Dt
by the second order BDF scheme

(Backward Differentiation Formulas, Chapter III.1 in [12]) along the characteristics curves
X(x, s; t) we obtain that

H
Dah

Dt
|t=tn+1' H

3an+1
h − 4an

h + an−1
h

2∆t
(30)

where an
h = ah(Xh(x, tn+1; tn), tn), an−1

h = ah(Xh(x, tn+1; tn−1), tn−1) and Xh(x, tn+1; tn−1)
denotes the approximate foot of the characteristic curve at time tn, or in other words,
the position at time tn of a moving point that at time tn+1 will arrive at x. In the
framework of the semi-Lagrangian formulation, there are many methods to compute the
points Xh(x, tn+1; tn−1) as well as the functions an

h. We describe our semi-Lagrangian
scheme as follows.

(1) The quasi-monotone semi-Lagrangian step

Let Yh = Vh0 + ∇Qh. Suppose that at time tn we know the solution (un
h, p

n
h) ∈

Yh × Qh, and the orthogonal projections wn
h = Phu

n
h and wn−1

h = Phu
n−1
h ∈ Vh0. We

calculate the values wn
h and wn−1

h as follows:
(1.1) For each velocity mesh-point xk which is not on the boundary, we compute the

points Xn−l
hk := Xh(xk, tn+1; tn−l), where the superscript l takes the values 0 and 1. To do

so, we set [1]
Xn

hk = xk − αhk

and αhk is approximated by the fixed iteration process

α
(r+1)
hk =

∆t

2

[
3wn

h(xk − 1

2
α

(r)
hk )− wn−1

h (xk − 1

2
α

(r)
hk )

]
. (31)

The values of wn
h(xk − 1

2
α

(r)
hk ) and wn−1

h (xk − 1
2
α

(r)
hk ) are calculated by finite element inter-

polation in Vh0. Analogously, we set for l = 1

Xn−1
hk = xk − αhk, (32)

now, αhk is calculated similarly as above by the fixed point iteration

α
(r+1)
hk = 2∆t

[
wn

h(xk − α
(r)
hk )

]
. (33)
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Once we know the coordinates of the feet of the Characteristics we proceed to evaluate
wn

h and wn−1
h at these points. There are several approaches to do so, see, for instance,

[8] and [18]; however, unlike these authors, who use a L2 projection of wn
h(Xn

h ) and
wn−1

h (Xn−1
h ) onto Vh, we propose an interpolatory projection to compute the values of

wn
h and wn−1

h at the points Xn
hk and Xn−1

hk respectively. This way of performing the
method of Characteristics yields the so called semi-Lagrangian schemes. The latter are
computationally more efficient than the L2projection and must be used with polynomials
of degree equal or larger than two in order to achieve an asymptotic error estimate of
order higher than two. The problem associated to interpolation by polynomials of degree
equal or larger than two is the possible generation of wiggles and consequently the loss of
uniform stability of the method. To overcome this trouble, we make use of the so called
quasi-monotone semi-Lagrangian scheme [4] and [3].

(1.2) Let p(k) be the element of Dh where Xn−l
hk is located, and let{

W n−l
1 ,W n−l

2 , .., W n−l
NH

}
be the set of nodal values of wn−j

h in p(k).
Calculate
(i)

W ∗n−l
k = wn−l

h (Xn−l
hk ) =

NH∑

i=1

W n−l
i ϕi(X

n−l
hk ) (34)

where {ϕi(x)}NH
i=1 is the set of nodal basis functions for the element p(K)

(ii)
W l+ := Max(W n−l

1 , ...,W n−l
NH )p(k)

W l− := Min(W n−l
1 , ..., W n−l

NH )p(k)
(35)

(iii) Set

W
n−l
k =





W l+ if W ∗n−l
k > W l+,

W l− if W ∗n−l
k < W l−,

W ∗n−l
k , otherwise.

(36)

And finally, set

wn−l
h =

M∑

k=1

W
n−l
k φk(x). (37)

Remark 1 As is shown in [3] the values W
n−l
k can also be expressed as

W
n−l
k = (1− Cn−l

k )I1W
n−l(Xn−l

hk ) + Cn−l
k I2W

n−l(Xn−l
hk ),

where Is : C0(D) → Vh is the piecewise Lagrange interpolation operator of degree s, and
Cn−l

k is a limiting coefficient given by

Cn−l
k = Min




1,





W l+ − I1W
n−l(Xn−l

hk )

P n−l
, if P n−l > 0,

W l− − I1W
n−l(Xn−l

hk )

P
, if P n−l < 0,

1 i f P n−l = 0




,

10
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with P n−l = I2W
n−l(Xn−l

hk ) − I1W
n−l(Xn−l

hk ). The role of the limiting coefficient is to
suppress the oscillations generated by the polynomials of degre larger or equal than two
by weighting with linear polynomials which are monotone. In regions where the solution
is sufficiently smooth and the oscillations are zero or very small, the limitiing coefficients
take the value one or very close to one and, therefore, the numerical solution is basically
that given by the polynomials of higher degree.

Next, we proceed to compute ũn+1
h ∈ Vh0, un+1

h ∈ Yh and pn1
h ∈ Qh by the projection

method performing:

(2) The Viscous step

H
3ũn+1

h − 4wn
h + wn−1

h

2∆t
+ Ahũ

n+1
h + Ch(2w

n
h − wn−1

h ) + κBt
hp

n
h = Phτ . (38)

(3) The Projection step

(H∇(pn+1
h − pn

h),∇qh) = − 3

2∆t
(divHũn+1

h , qh) ∀qh ∈ Qh,

un+1
h = ũn+1

h −∆t∇(pn+1
h − κpn

h),
(Phu

n+1
h , vh) = (un+1

h , vh) ∀vh ∈ Vh0,

(39)

where the parameter κ takes the values 0 or 1
(4) Set n = n + 1 and go to (1)

Several remarks are now in order.
(1) The space Yh was introduced in [10] in its analysis of projection schemes. Yh =

Vh0 +∇Qh.
(2) Note that the first two equations in (39) define a problem equivalent to the following

one: find un+1
h ∈ Yh such that

(
3un+1

h − 3ihũ
n+1
h

2∆t
, zh

)
+

(
H∇(pn+1

h − pn
h), zh

)
= 0, ∀zh ∈ Yh

(divHun+1, qh) = 0 ∀qh ∈ Qh.

(3) un+1
h ∈ Yh is discontinuous at the inter-element boundaries, so that we need to

calculate wn+1
h = Phu

n+1
h , which is a Lipschitz continuous velocity, as the velocity to be

used in the semi-Lagrangian step to compute the points Xn+1
hk .

4 Numerical experiments

We have applied the numerical scheme described above to simulate the wind driven
circulation in a subdomain D of the North Atlantic Ocean which extends from 15oN up to
65oN . Figure 1 shows this domain and the isolines of the bottom topography H(x, y) used

11
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Figure 1:

in the experiments. Since the wind- driven circulation is confined in the upper layer, we
have restricted the range of variation of H(x, y) between 50m and 1000m for all (x, y).
Figure 2 (upper panel) shows the climatological wind stress pattern that forces the model.
This pattern has been obtained by averaging Hellerman Rosenstein monthly wind stress
data. The centre of the β−plane approximation is at θ0 = 40ON . The computational
mesh is composed of P2 − P1 elements in order to satisfy the inf-sup condition. The size
of the elements of the computational mesh ranges from 10km in the region of The Gulf
Stream up to 40Km in many regions of the interior of the domain where the flow is very
smooth. The total number of elements is 124244 and there are 250715 velocity nodes and
63235 pressure nodes. A detail of the mesh in the region of The Gulf Stream is shown
in Figure 2 (lower panel), here the elements are small because is a region where the flow
undergoes strong variations. A time step ∆t = 2 hours is used in all the numerical
experiments run with the model. To better see the influence of the depth in the long
term dynamics of a barotropic model, we have run a first experiment with a constant
depth H = 1000m and an eddy viscosity coefficient νh = 2000m2s−1. The model is quite
dissipative and, therefore, reaches the steady state at T = 120 . The stream lines of the
steady flow are depicted in Figure 3 (upper panel) where we can distinguish two closed
circulation patterns, an anticlockwise pattern in the northern part of the domain and
a clockwise pattern in the southern basin. In this circulation patterns it is noticeable
the westward intensification of the flow along the North America coast. From the tip of
the Florida coast up to about 40oN the intensification hypothetically corresponds to The
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Figure 2:
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Figure 3:

Gulf Stream, whereas the intensification which appears along the Newfoundland coast
corresponds to The Labrador Current. There are no interaction between the upper and
lower circulation patterns. However, things are different when the experiment includes
the bottom topography as Figure 3 (lower panel) shows. Here, we can see that the The
Labrador Current comes further down to the South due to the fact that the presence of
the George Banks prevents the lower current to penetrate further up to the North. As
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Figure 4:

the eddy viscosity coefficient νh is decreased the flow takes longer to reach the steady
state and for νh = 670±5m2s−1 the flow experiences the first Hopf bifurcation. In Figure
4 we show the time history of the energy of the flow and the corresponding spectrum
for three viscosities. The flow is periodic for νh = 670m2s−1 with a period of 26 days
and for νh = 650m2s−1 with a period of 24 days; however, for νh = 640m2s−1 the flow
has already undergone another bifurcation and the periodic structure has become quasi-
periodic because of the presence of two rationally independent periods (or frequencies),
one is 21 days and the second one is 388 days. A further reduction in the eddy viscosity
νh produces a-periodic states. Figure 5 shows a sequence of aperiodic states of the flow.
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Figure 5:
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5 Proper orthogonal decomposition (POD) technique

The focus of this section is to obtain a reduced equivalent system of equations (26)-(27)
to do the bifurcation analysis of the solution as the eddy viscosity parameter changes. A
method to calculate such a system is the so called POD technique which generates a
finite dimensional orthogonal basis that is optimal (in a sense to be defined bellow). A
description of this technique is as follows.

POD algorithm

Let us consider the dynamical system

du

dt
= F (t, u; νh), u(0) = u0, u(t) ∈ H, t ∈ (0, T ] (40)

where H is a finite dimensional Hilbert space with scalar product (·, ·) and norm ‖ · ‖,
and let us assume that we have a sequence {ui}p

1=1 of snapshots of u(t). In the numerical
computation the snapshots are the numerical solutions stored at predetermined time steps.

(1) Compute

u =

p∑

i=1

∆τ i−1u
i

p∑

i=1

∆τ i−1

,

where ∆τ i−1 = τ i − τ i−1 are the time instants at which the snapshots are stored. Then
set

ũi = ui − ui.

(2) Compute the covariance matrix

Kij =
p∑

i=1

∆τ i−1(ũ
i, ũj), 1 ≤ i, j ≤ p. (41)

Notice that the matrix K is symmetric and semi-definite positive.

(3) Calculate the eigenvalues {λk} and eigenvectors {vk} of the matrix K and order
the basis {vk} after decreasing eigenvalues λk (this {vk} will necesarily be orthogonal).

(4) Compute the orthonormal basis {ϕk}, ϕk ∈ H, where

ϕk =

p∑

i=1

vkiũ
i

‖
p∑

i=1

vkiũ
i ‖

(42)

17
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Notice that this basis is optimal in the sense that minimizes the error in proyecting {ui}p
1=1

onto any n-dimensional space, for all n.

(5) (Cut-off criterium) The number p∗of energetically significant eigenvalues is given
by the relation

p∗∑

i=1

λi

p∑

i=1

λi

= α (43)

where α is a the cut-off parameter, 0 < α ≤ 1. In our calculations we have taken 0.99 <
α < 1.

(6) Approximate u(t) ∈ H as

U(t) = u +
p∑

i=1

ai(t)ϕi (44)

and determine the coefficients ai(t) by substitution of U(t) in (40) and do a Galerkin
projection on the span{ϕi}p∗

i=1. Hence,

dai(t)

dt
= (F (t, U ; νh), ϕi), ai(0) = (U(0), ϕi). (45)

To create the reduced system dynamically equivalent to (26)-(27) we store velocity
snapshots of all the steady states plus snapshots of the periodic states corresponding
to the values of νh = 670m2s−1, 650m2s−1 and 640m2s−1. Table 1 shows the number
of snapshots (ns) and the number of the orthonormal basis functions (nb) chosen in each
state. The sum of these individual orthonormal functions generate the global orthonormal
basis {ϕi}30

i=1.

νh ns nb

steady states 10 10
670 26 6
650 200 9
640 24 5

Table 1

We approximate the semi-discrete solution uh(t) of (26)-(27) by an element U(t) in
the subspace span{ϕi}30

i=1. Then, the substitution of U(t) in (26)-(27) followed by a
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Figure 6: circle: semi-Lagrangian results; line: AUTO97 results

Galerkin projection onto span{ϕi}30
i=1 gives the set of differential equations to determine

the coefficients ai(t):

a′k (t) =
30∑

i,j=1

dijkai(t)aj(t) +
30∑

i=1

(qki + νHq′ki) ai(t) + (rk + νHr′k) ∀k = 1, 2, . . . , 30 (46)

where

dijk = −
(
Hϕi · ∇ϕj, ϕk

)
L2(Ω)2

qki = − (Hu · ∇ϕi, ϕk)L2(Ω)2 − (Hϕi · ∇u, ϕk)L2(Ω)2 −
(
Hfϕ⊥i , ϕk

)
L2(Ω)2

− γδik

q′ki = (H∇ϕi,∇ϕk)L2(Ω)2

rki = − (Hu · ∇u, ϕk)L2(Ω)2 − (Hfu, ϕk)L2(Ω)2 − γ (Hu,ϕk)L2(Ω)2 + (Hτ, ϕk)L2(Ω)2

r′ki = (H∇u,∇φk)L2(Ω)2

We use the program AUTO97 to compute the solutions of the equations (46) and the
bifurcation diagram as νh varies. Figure 6 shows the bifurcation diagram and Figure 7
is a detail of bifurcation branches after the first Hopf bifurcation. As we see in Figure
6, the POD technique is able to capture well the steady state, but the prediction of the
periodic, quasi-periodic and aperiodic states is not that good as Figure 7 shows, where
blue region is for unstable periodic states and green region for stable ones.
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Figure 7: circle: semi-Lagrangian results; line: AUTO97 results; rhomboids: Hopf bifurcation
(AUTO97)
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