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Abstract

We present in this paper a numerical study of long-term calculations of an
idealized mid-latitude ocean circulation model. The objective of this paper is
twofold. First, we present an efficient semi-Lagrangia scheme for eddy resolving
ocean circulation models, and second, we use the so called proper orthogonal
decomposition technique to characterize the finite dimensional manifold that
contains the attractor of the solution. Using a Galerkin projection on this man-
ifold we reduce the high dimensional system obtained by the application of the
finite element method, to a low-dimensional one and , thus, we can calculate the
bifurcation diagram with the horizontal eddy viscosity coefficient as a control
parameter.

Introduction

On the large scale, the ocean circulation system is driven by wind-stress, heat and fresh
water fluxes. The wind-stress is the main driving mechanism of the surface circulation,
whereas heat and fresh water fluxes are responsible of the thermohaline circulation,
which is a component of the ocean circulation system with time scales ranging from
decades to centuries and spatial scales extending on the whole ocean basin. Hence,
the thermohaline circulation has a strong influence on the longer time scales of climate
variability. On the other hand, the surface circulation driven by wind stress determines
the sea surface temperature and is involved in the short time scale (up to decades)
climate variability.

The mean feature of the wind stress driven circulation at mid-latitudes is the pres-
ence of a double gyre phenomenon with a strong boundary current at the lower gyre,
which extends as a jet to the interior of the ocean. These gyres have a typical horizontal
scale of about one thousand kilometers and are persistent and dominant. They repre-
sent the seasonal and inter-annual variability of large scale ocean surface circulation at
mid-latitudes. Also, they transfer potential energy.

In order to understand the wind-stress driven circulation, the oceanographers have
constructed a hierarchy of mathematical models. In this paper, we investigate numer-
ically some properties of Quasi-Geostrophic models, which belong to the high range of
this hierarchy.



The main objectives of this paper are: i) to describe an efficient semi-Lagrangian
scheme to compute the numerical solution of ocean circulation models, and to com-
pare it with the leap-frog scheme which is still used by many modelers; ii) since it
has been shown the existence of global attractor for ocean models [7], we shall give
a characterization of such an attractor by computing an orthonormal truncated basis
of a finite dimensional manifold that contains it. To do so, we shall use the proper
orthogonal decomposition technique (POD) [3], [5] and [9]. This basis together with
a Galerkin projection allow to reducing the numerical Quasi-Geostrophic model to a
dynamically equivalent low-dimensional non-linear ordinary differential equation sys-
tem and , therefore, to computing the bifurcation diagram taking the horizontal eddy
viscosity coefficient as a control parameter.

The Model

Our ocean model is a barotropic (constant density ρ0) mid-latitude β-plane ocean
domain D of constant depth H which is driven by climatological wind stresses acting
upon the sea surface. For such a model, the system of primitive equations that govern
the general ocean dynamics [7] can be integrated in the vertical to yield the following
2D Navier-Stokes equations

A) Vorticity ω(x, t) = ∂u2

∂x1
− ∂u1

∂x2
D(ω+f)
Dt

= A∆ω − γω + F in D × (0, T ],
ω(x, 0) = ω0(x) in D,
ω(x, t) |∂D= 0, ∀t,

(1)

B) Stream function ψ(x, t){
∆ψ = ω in D × (0, T ],

ψ |∂D= 0 ∀t. (2)

We explain now the notation used in (1) and (2). f , known as the Coriolis param-
eter, represents the planetary vorticity of the motion due to the rotation of the Earth.
The mathematical expression for f , assuming that the Earth is a perfect sphere, is
f = 2Ω cos θ, where Ω = 7.2526 × 10−5s−1 is the angular velocity of the Earth and
θ (0 ≤ θ ≤ π) is the latitude. The β-plane approximation (see [8] for mathematical
details) consists of projecting the spherical surface on its tangent plane at the point
(ψ0, θ0) ∈ D, and defining on such a plane a local Cartesian coordinate system (x1, x2)
with origin at (φ0, θ0),where x1 = φ−φ0

a
denotes the west-east direction, a being the

radius of the Earth, and x2 = θ0−θ
a

denotes the south-north direction. In doing so,
one substitutes the Coriolis parameter f by its linear approximation about the origin
f = f0 +βx2, where f0 = 2Ω cos θ0 and β = 1

a
df
dθ
|θ=θ0 , and approximate the equation of

motion formulated in spherical by a formulation in the local Cartesian coordinates of
the tangent plane. It is considered that this is a first order approximation for studying
the large scale ocean dynamics valid at mid-latitudes, say 20o ≤ θ ≤ 50o. The total
derivative D(ω+f)

Dt
= ∂ω

∂t
+ u1

∂ω
∂x1

+ u2
∂ω
∂x2

+ β ∂ψ
∂x1

, where (u1(x, t), u2(x, t)) are the com-
ponents of the horizontal velocity u(x, t), which are expressed in terms of the stream



function ψ(x, t) as u1 = − ∂ψ
∂x2

and u2 = ∂ψ
∂x1

. F (x) = 1
ρ0H

curlzτ, τ(x) = (τ1(x), τ2(x))
being the climatological wind stress. A is a constant horizontal eddy viscosity coeffi-
cient and γ is a bottom friction coefficient.

To characterize the dynamics of the model it is convenient to introduce a number
of external parameters which arise in the scaling of (1) and (2) as follows. Let τ0 be
typical amplitude of the climatological wind stress, then from the Sverdrup formula for
large scale horizontal circulation in the interior of the ocean, one can obtain a typical
horizontal velocity scale

U =
τ0

ρ0βHL2

where L is a representative horizontal length scale of ocean circulation and H is
the typical depth of the ocean. Next, setting

(x1, x2) = L(x′1, x
′
2), (u1,u2) = U(u′1,u

′
2), t = UL−1t′, τ = τ0τ

′,

where the prime symbol denotes a non dimensional variable, and performing this
scaling in (1) and (2) , leads to the following non dimensional vorticity equation

∂ω

∂t
+ J(ψ, ω) +

1

R

∂ψ

∂x1

=
1

Re
∆ω − EB

R
ω +

τ0
R
curlzτ,

where for convenience we have dropped the symbol ′ from the variables. J(ψ, ω) =
∂ψ
∂x1

∂ω
∂x2

− ∂ψ
∂x2

∂ω
∂x1

is the Jacobian operator, and

R =
U

βL2
, Re =

UL

A
, EB =

γ

βL
. (3)

R is known as the Rossby number, EB is called the bottom Ekman number and Re
is the Reynolds number.

For our ocean model, a reasonable compromise is to fixing the bottom friction
coefficient γ and leaving the dynamics depends on Re only, for the amplitude τ0 is
estimated from observational data.

Numerical formulation

Since the main concern of this paper is on the numerical aspects of (1) and (2), we
shall assume that under proper regularity assumptions on ∂D, initial conditions for
(ω, ψ) and F , (1) and (2) have a unique weak solution (ω, ψ) ∈ C(0, T : D(A) ×
D(A)), where D(A) ⊂ H2(D) ∩ H1

0 (D), is the domain of the operator A = −∆.
Furthermore, ψ ∈ L2(0, T ;H3

0 (D)). In order to find an approximate solution to (ω, ψ),
we discretize the dependent variables both in time and space. For space discretization,
we use the finite element method (although this is not an standard method in numerical
ocean modelling studies) due to its good properties to deal with the irregular shape
of the ocean coastlines and its flexibility to make local mesh refinements. As for time
discretization, we present results obtained with two different schemes. The leap-frog
scheme, which is still used in some of the best established numerical ocean general
circulation models, and a semi-Lagrangian scheme.



Finite element approximation: generalities

Given h0 ∈ R, 0 < h0 < 1, let h be a space discretization parameter such that
0 < h < h0. To compute a numerical solution of (1) and (2) we generate a quasi-
uniform partitionDh inD composed of elements Tj that satisfy the following conditions:
i) Let NE be the number of elements in Dh, then D =

⋃
j

Tj, j = 1, .., NE. ii) For

1≤ j, l ≤ NE, j 6= l,

Tj ∩ Tl =


Pi, a mesh point, or

Γjl; a common side, or
∅, empty set otherwiae.

iii) There is a positive constant µ such that for all Tj,
dj
hj
> µ, where dj denotes the

diameter of the circle inscribed in Tj and hj is the diameter of Tj. Next, we associate a
family of finite element spaces with the partition Dh. To do so, we consider an element
of reference T̂ ⊂ R2 such that for each element Tj of Dh we can define a one-to-one

mapping Fj : T̂ → Tj which has the property that if P̂m(T̂ ) is the set of polynomials

p̂(x̂) of degree ≤ m defined on T̂ , then for each Tj there exists the set

Pm(Tj) = {p(x), x ∈ Tj(x) : p(x) = p̂(F−1
j (x))}.

We define now the family of finite element spaces

Vh = {vh ∈ W 1,∞(D) : vh |Tj∈ Pm(Tj) ∀Tj ∈ Dh}, and
Vho = Vh ∩H1

0 (D)
(4)

Furthermore, we also need the finite element space Zh where the flow velocity is
approximated

Zh = {uh ∈ Vh × Vh : uh · n |∂D= 0}.
If M is the number of mesh point in Dh, then any element of Vh is expressed as

vh =
M∑
i=1

ViΦi(x), (5)

where Vi = vh(xi), xi being the i− th mesh point, and {Φi} is the set of global nodal
basis functions of Vh characterized by the property Φi(xj) = δij. Similarly, for the
elements of Zh

The finite element-leap-frog method

Let IN = {0 = t0 < t1 <, ... < tN = T} be a partition of [0, T ], with a constant time
step k := tn+1 − tn for any n. Hereafter, we shall use the notations an(x) and ani to
denote a(x, tn) and a(xi, tn) respectively. The finite element leap-frog solution to (1)
and (2) consist of the pair of maps ωh : IN → Vh0 and ψh : IN → Vh0, with m = 1, such
that for all time instant tn+1 ∈ IN , n > 0, and vh ∈ Vh0 satisfy the relations(

α1ω
n+1
h , vh

)
+

(
kA∇ωn+1

h ,∇vh
)

=
(
α2ω

n−1
h , vh

)
−

(
kA∇ωn−1

h ,∇vh
)

+ (Gn, vh), (6)



and (
∇ψn+1

h ,∇vh
)

= −(ωn+1
h , vh), (7)

where
Gn = 2k (J(ψnh , ω

n
h) + F ), α1 = 1 + kγ, α2 = 1− kγ

and (a, b) :=
∫
D
abdx denotes the L2- scalar product

We note that the time discretization of the viscous terms is implicit while the one of
the Jacobian and forcing terms is explicitly. This makes the scheme be conditionally
stable. In fact, using the arguments of [6] it can be proved that the scheme is linearly
stable if there is a constant CL independent of h and k such that

kµ1 |∇ψnh |L∞(IN ,D) < 1− CL (8)

where µ1 is the square root of the reciprocal of the smallest eigenvalue of ∆u+µu =
0 in D and u|∂D = 0.

The finite element-semi-Lagrangian method

The semi-Lagrangian method is used to discretize (1) backwards in time along the char-
acteristics of the operator D

Dt
. The combination of finite elements and semi-Lagrangian

method yields the following fractional step method.
Let ωh : IN → Vh0 and ψh : IN → Vh0, with m = 2, such that for all n = 1, 2, ...

ωnh =
M∑
i=1

W n
i Φi(x) and ψnh =

M∑
i=1

Ψn
i Φi(x). (9)

The computation of (W n
i ,Ψ

n
i ) is carried out through the following procedure:

A) The transport step.

Given ωn−1
h , ψn−1

h and un−1
h = (un−1

1h , un−1
2h ) ∈ Zh,

1) Calculate for each mesh point xk, k = 1, 2, ...,M, the departure point Xn−1
hk ≡

Xh(xk, tn; tn−1). To do so, we follow the scheme of [1] and set

Xn−1
hk = xk − αhk,

where αhk is computed via the fixed point iteration

α
(r+1)
hk =

∆t

2

[
3un−1

h (xk −
1

2
α

(r)
hk )− un−2

h (xk −
1

2
α

(r)
hk )

]
.

The values of un−1
h (xk− 1

2
α

(r)
hk ) and un−2

h (xk− 1
2
α

(r)
hk ) are calculated by finite element

interpolation.

2) Let p(k) be the element of Dh where Xn−1
hk is located, and let{

W n−1
1 ,W n−2

2 , ..,W n−1
NH

}
be the set of nodal values of ωn−1

h in p(k).
Calculate



i) W ∗
k = ωn−1

h (Xn−1
hk ) and Ck = β(x2k −Xn−1

h2k ).

ii)
W+ := Max(W n−1

1 , ...,W n−1
NH )p(k)

W− := Min(W n−1
1 , ...,W n−1

NH )p(k)

iii) W
n−1

k =


W+ if W ∗

k > W+,
W− if W ∗

k < W−,
W ∗
k , otherwise.

Finally, set

ωn−1
h =

∑M
k=1W

n−1

k Φk(x)

Cn−1
h =

∑M
k=1C

n−1
k Φk(x),

(10)

where Cn−1
h = Df

Dt
|t=tn−1 .

B) The diffusive step

Find ωnh ∈ Vh0 and ψnh ∈ Vh0 such that for all qh ∈ Vh0
i)

(α1ω
n
h , qh) + δ (∇ωnh ,∇qh) =

(
α2ω

n−1
h , qh

)
−

δ
(
∇ωn−1

h ,∇qh
)
−

(
Cn−1
h , qh

)
+ ∆t

2

(
F
n− 1

2
h , qh

)
,

(11)

ii)
− (∇ψnh ,∇qh) = (ωnh , qh) . (12)

where F
n− 1

2
h = 1

2
(F n

h + F ∗n−1
h ) with F ∗n−1

h =
∑k=M

k=1 F ∗n−1
k Φk and

F ∗n−1
k = F n−1

h (Xn−1
hk ), α1 = 1 + γ

2
∆t, α2 = 1− γ

2
∆t and δ = ∆t

2
A.

iii) Find unh ∈ Zh such that for all yh ∈ Zh

(unh,yh) = (rotψnh ,yh) , (13)

where

rotψnh =

(
−∂ψ

n
h

∂x2

,
∂ψnh
∂x1

)
This scheme is unconditionall stable because taking qh = ωnh + ωn−1

h in (11) and
using Theorem 3 of [4] yields

‖ ωnh ‖≤‖ ωn−1
h ‖ +

k

2

(
‖ F n ‖ + ‖ F n−1 ‖

)
Numerical experiments

We perform numerical experiments at different values of the horizontal eddy viscosity
coefficient A, or equivalently, see (3), at different Reynolds numbers. The values of the
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Fig. 1.

other parameters used in the experiments are

L = 106m H = 800m
f0 = 5× 10−5s−1 β = 2× 10−11m−1s−1

τ0 = 1.5× 10−4ρ0 ρ0 = 1000kgm−3

U = 0.03ms−1 γ = 10−7s−1

We use two different meshes, one for the Leap-Frog scheme and the other one for the
Semi-Lagrangian one. Both meshes have the same number of mesh points M = 15011,
but a different number of elements NE = 29328 linear elements for the leap-frog
scheme and NE = 7332 quadratic elements for the semi-Lagrangian scheme. The
meshes have more elements in those regions of strong variation of the flow, such as the
western boundary layer, where the size of the triangles is 5km, and in regions where
there are eddy shedding. In regions of smooth flow the size of the triangles is 40km.

We carry out long-term (T = 20 years) numerical experiments withA = 1000m2s−1,
800m2s−1, 600m2s−1, 400m2s−1 and 200m2s−1 for both leap-frog and semi-Lagrangian
schemes. A time step k = 6 hours delivers stable solutions for all the numeri-
cal runs done with the semi-Lagrangian scheme; whereas for the leap-frog scheme
k has to be 1 hour in order to obtain stable solutions for the experiments with
A = 1000m2s−1, 800m2s−1, 600m2s−1, and k = 0.5hour for experiments with
A = 400m2s−1 and A = 200 m2s−1; although for the latter experiment the scheme
become unstable after few thousand time steps.

Figures 1 (a), (b) and (c) show snapshots at t = 10 years of the stream func-
tion solution computed by the leap-frog scheme with A = 1000m2s−1, 800m2s−1, and
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400m2s−1, respectively; whereas Figures 2 (a), (b) and (c) show stream function snap-
shots at t = 10 years of the semi-Lagrangian solution for A = 1000m2s−1, 600m2s−1

and 200m2s−1 respectively. For A = 1000m2s−1 the flow converges to steady-state
composed of a cyclonic gyre in the northern part of the domain and an anticyclonic
one in the southern part. The two gyres are separated by a meandering jet and the
northern-southern symmetry of the motion has been broken. For A ≤ 800m2s−1 the
flow does not reach the steady state.

¿From a dynamical viewpoint it is more interesting to know the time evolution and
the spectrum of the kinetic energy E(t) = 1

2

∫
D
(u2

1(t) + u2
2(t))dx of the flow. These

magnitudes are represented in Figures 3, and 4, in which full line pictures correspond
to the semi-Lagrangian solution and broken line pictures correspond to the leap-frog
solution. Thus, Figure 3 (a) represents the time history of E(t) for A = 1000m2s−1.

Here, we notice that the flow becomes steady after about 5 years, and both schemes
give basically the same solution. However, for A = 800m2s−1 and A = 600m2s−1, see
Figures 3 (b) − (e), we see that after a spin-up period of about 1 year followed
by a steady state which reaches a point located somewhere between the second and
third year, the flow becomes periodic with principal periods of 185 days for A =
800m2s−1 and 220 days for A = 600m2s−1, respectively. Again, both schemes give
similar solutions. The important point here is that the flow has undergone a Hopf
bifurcation somewhere between A = 1000m2s−1 and A = 800m2s−1.

For A = 400m2s−1 the semi-Lagrangian solution becomes quasi-periodic with a few
incommensurate frequencies, whereas the leap-frog solution remains steady after the
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spin up period. So that, somewhere between A = 500m2s−1 and A = 400m2s−1 the
periodic solutions undergo a secondary bifurcation. Our final experiment was run with
A = 200m2s−1 and the results are shown in Figures 4(a) and 4(b). Here we see that the
leap-frog solution becomes unstable after 5 years of integration with k = 0.5 hours,
whereas the semi-Lagrangian solution, computed with k = 6 hours, exhibits a sort of
a chaotic behavior as suggested by its broad band spectrum.

Summarizing, we observe that of the dynamics of the flow is composed of coherent
structures both in time and space with a time history that depends on the eddy
viscosity coefficient A. The flow asymptotically approaches a stable steady state for
A ≥ 1000, as A is decreased the steady state loses stability to a periodic state, which
remain stable for values of A well beyond 600, for some value of A between 500 a 400
the periodic state undergoes a secondary bifurcation to a quasi-periodic flow, which
then persists beyond 400. In the next section we shall draw the bifurcation diagram of
the flow as a function of A.

Table 1 gives some statistics of the experiments concerning the total CPU time and
CPU time per time step employed in each experiment for both methods.

All the experiments have been run on a processor Mips R10000 to 250 MHz and
with 256 Mbytes of RAM memory. We note that the CPU time spent by the semi-
Lagrangian scheme per time step is about 30%−40% lower than the one corresponding
to the leap-frog scheme, this fact, together with the property of being unconditionally
stable, makes the semi-Lagrangian scheme be very competitive for large scale compu-
tation as one needs to do in climate studies.
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SEMILAGRANGIANO LEAP-FROG
PT CPU CPU/PT PT CPU CPU/PT

AH = 1000 29200 13587.16 0.465313 175200 199574.09 1.139121
AH = 800 29200 22158.97 0.758868 175200 321110.02 1.832819
AH = 600 29200 47181.17 1.615793 175200 368816.87 2.105119
AH = 400 29200 20284.30 0.694667 350400 349560.64 0.997604
AH = 200 29200 52026.10 1.781715 106080 119592.40 1.127379

Table 1.

Proper orthogonal decomposition (POD) technique

The focus of this section is twofold. Since there exists an attractor of system (1) and
(2) see [5], first we wish to characterize the finite dimensional manifold that contains
such an attractor; and second we wish to do the numerical study of the instabilities
experienced by the flow as A decreases. A method to achieve this consists of reducing
the system (1) and (2) to a non linear ODE system via Galerkin projection, and
then to apply well known techniques to calculate the bifurcation diagram. If one does
the Galerkin projection using finite elements or spectral methods, then one obtains
an ODE system whose dimension is so large (of order 104 − 105), that makes the
method computationally unfeasible. There are other methods that through a post-
processing procedure of the numerical solution of (1) and (2) can generate a subspace
containing the approximate attractor of the system, and such that the dimension of
which is computationally manageable. One of such methods is the proper orthogonal
decomposition technique (POD) which generates a finite dimensional orthogonal basis



that is optimal in a sense to be defined below. An algorithmic description of this
technique is as follows.

Implementation of the POD technique

Let us consider the dynamical system

du

dt
= F (t, u;A), u(0) = u0, u(t) ∈ H ∀t ∈ [0, T ] (14)

where H is a finite dimensional Hilbert space with scalar product (·, ·) and norm
‖ · ‖, and let us assume that we have a collection {ui}pi=1 of ”snapshots” of u(t). In nu-
merical computations the ”snapshots” are the numerical solutions stored at predefined
time steps.

Step 1 Compute

u =
1∑p

i=1 ∆τi−1

p∑
i=1

∆τi−1u
i, (15)

where ∆τi = τi−τi−1, τi being the time instants at which the snapshots are stored.
Then set

ũi = ui − u. (16)

Step 2 Compute the covariance matrix

Kij =

p−1∑
i=1

∆τi(ũ
i, ũj), 1 ≤ i, j ≤ p. (17)

Notice that the matrix K is symmetric and semi-positive definite (the latter prop-
erty will be proved below)

Step 3 Calculate the eigenvalues {λk} and eigenfunctions {vk} of K, e.g., solve

Kv = λv. (18)

The base {vk} is ordered after decreasing eigenvalues λk.

Step 4 Compute the orthonormal basis {ϕk}, ϕk ∈ H, where

ϕk =

∑p
i=1 vkiũ

i

‖
∑p

i=1 vkiũ
i ‖

(19)

Step 5 Cut-off criterium. If the dimension of the matrixK is too high, the procedure
can become computationally unsuitable because the number of eigenfunctions to be
stored may be too large. Since our interes consists of generating an orthonormal basis
able to capture most of the energy of the system (we associate the energy of u(t) with
its L2-norm), we shall establish a cut-off criterium to neglect those eigenfunctions with
low energy content. Taking into account that the eigenvalue λk represents the mean



energy of the system projected on the subspace generated by the eigenfunction ϕk, a
practical criterium is to store p∗ eigenfunctions, 0 < p∗ ≤ rankK ≤ p− 1, such that∑p∗

i=1 λi∑p
i=1 λi

= α > .99. (20)

Hence, the dimension of the finite dimensional manifold that contains the approxi-
mate attractor of the system is p∗.

Step 6 Approximate u(t) ∈ H as

uh(t) = u+

p∗∑
i=1

ai(t)ϕi. (21)

and determine the coefficients ai(t), i = 1, 2, .., p∗, by substituting uh(t) into (14)
and performing a Galerkin projection on the span{ϕi}i=1,..p∗ . Hence, for i = 1, 2, .., p∗,

dai
dt

= (F (t, uh;A), ϕi), ai(0) = (u0h, ϕi). (22)

Analysis

We shall prove some important properties of the POD technique, which are the math-
ematical foundations of such a technique. To this end, we consider Hilbert space H
= L2(0, T ) with inner product and norm denoted by (·, ·) and ‖ · ‖, respectively, and
the set I ⊂ Rd, d ≥ 1. We introduce an average operator 〈·〉 defined as

〈·〉 : L1(I) → R,
〈u〉 =

∫
I
udx

(23)

Hence, there exists a constant C such that

| 〈u〉 |≤ C ‖ u ‖L1(I),

where ‖ u ‖L1(I) denotes the L1−norm of u. In relation with the covariance matrix
K we define an operator T : H → H as follows. Given u ∈ L2(I,H)

(Tφ, ϕ) = 〈(u, φ)(u, ϕ)〉, ∀φ, ϕ ∈ H. (24)

We have the following lemma
Lemma. The operator T : H → H defined in (24) is continuous, linear, self-

adjoint, semi-positive definite and compact
Proof. First, we have to prove that T is well defined, that is, 〈(u, φ)(u, ϕ)〉 makes

sense. By virtue of (23), (24) and Cauchy inequality it follows that

| 〈(u, φ)(u, ϕ)〉 |≤
∫
I
| (u, φ)(u, ϕ) | dx

≤‖ φ ‖‖ ϕ ‖
∫
I
‖ u ‖2 dx =‖ φ ‖‖ ϕ ‖‖ u ‖2

L2(I,H)<∞.



So that, for all φ, ϕ ∈ H (u, φ)(u, ϕ) is in L1(I). It remains to check that Tφ ∈ H. To
this end, let us assume that this true and take an orthonormal basis {ek} of H Then

Tφ =
∑
k

(Tφ, ek)ek, (25)

so that
‖ Tφ ‖2=

∑
k

| (Tφ, ek) |2

and from (24) it follows that

‖ Tφ ‖2=
∑
k

| 〈(u, φ)(u, ek)〉 |2≤ C2 ‖ φ ‖2‖ u ‖4
L2(I,H)<∞, (26)

where that last inequality on the right hand side has been obtained by using the
same type of argument as above. Now, we go on with the proof of the lemma. It is easy
to show that T is a linear, continuous, self- adjoint and semi-positive deinite operator
so that we omit the prove. Next, we prove that T is a compact operator by defining a
sequence of compact operators {Tn}n∈N , Tn : H → H such that Tn → T in L(H) [11,
X,2]. To find these operators Tn, let us consider the sequence {un}n∈N ⊂ L2(I,H)
such that un → u in L2(I,H) and span{un} is finite. Then, we define Tn as follows:
∀φ, ϕ ∈ H

(Tnφ, ϕ) = 〈(un, φ)(un, ϕ)〉.

So that Tn(H) ⊂ span{un}
H

, or consequently, for all n the operators Tn are of
finite range. Hence, if B is the closed unite ball in H it follows that Tn(B) is compact
and, therefore, Tn is a compact operator. It remains to prove that ‖ Tn − T ‖→ 0 as
n→∞. To do so, we consider

((Tn − T )φ, ϕ) = 〈(un, φ)(un, ϕ)〉 − 〈(u, φ)(u, ϕ)〉
= 〈(un, φ)(un − u, ϕ)〉+ 〈(un − u, φ)(u, ϕ)〉.

Then, arguing as above it is easy to see that

| ((Tn − T )φ, ϕ) |≤ C ‖ φ ‖‖ ϕ ‖ {‖ un ‖L2(I,H) + ‖ u ‖L2(I,H)} ‖ un − u ‖L2(I,H)

By taking φ and ϕ such as ‖ φ ‖≤ 1 and ϕ = (Tn − T )φ yields

‖ (Tn − T )φ ‖2≤ C{‖ un ‖L2(I,H) + ‖ u ‖L2(I,H)} ‖ un − u ‖L2(I,H) .

Hence, ‖ Tn − T ‖→ 0 as n→∞., and this concludes the proof.
For our purposes, Lemma 1 is relevant because by virtue of Hilbert-Schmidt theorem

it guaranties the existence of pairs (λi, φi), i = 1, 2..., dimH, λi ∈ R+, φi ∈ H being
orthonormal, such that

a)
Tφi = λiφi, 1 ≤ i ≤ dimH (27)



and all u(t) ∈ H can be written as

u(t) =
∑

i ai(t)φi,
ai = (u, φi), hence ‖ u ‖2=

∑
i | ai |2 .

(28)

b) Furthermore, (λi, φi) are the critical points of the Lagrangian J : H ×R+ → R
defined as

J(ϕ, λ) = (Tϕ, ϕ)− λ ‖ ϕ ‖ (29)

It is straightforward to obtain from (27) and (28) the following relations

λi = (Tφi, φi) = 〈(u, φi)2〉 = 〈| ai |2〉, ∀i,

hence, ∑
i

λi =
∑
i

〈| ai |2〉 = 〈‖ u ‖2〉. (30)

These relations are important because they are used to characterize the orthonormal
basis {φi} as optimal in the sense defined in the following proposition

Proposition. Let {φi} and {ψi}, 1 ≤ i ≤ dimH, be two distinct orthonormal
bases of H, φi being the i-th eigunfunction of the operator T . Let uM and ũM be
approximations of u ∈ H defined as

uM(t) =
∑M

i ai(t)φi
ũM(t) =

∑M
i bi(t)ψi

, M ≤ dimH

then the basis {φi} is optimal in the sense that for all M

〈‖ u− uM ‖〉 ≤ 〈‖ u− ũM ‖〉

Proof. Let us represent u as

u =
∑
i

aiφi and u =
∑
i

biψi.

On the other hand, since for all i ψi ∈ H, then we can represent it in terms of the
basis {φi} as

ψk =
∑
i

Ckiφi, 1 ≤ k ≤ dimH.

Next,

〈‖ u− uM ‖2〉 = 〈(u− uM , u− uM)〉 = 〈(
∑
i>M

aiφi,
∑
i>M

aiφi)〉 =
∑
i>M

〈| ai |2〉,

similarly

〈‖ u− ũM ‖2〉 = 〈(u− ũM , u− ũM)〉 = 〈(
∑
i>M

aiψi,
∑
i>M

biψi)〉 =
∑
i>M

〈| bi |2〉



Using the representation of the basis {ψi} in terms of the eigenfunctions {φi} we
can set

bk =
M∑
i=1

Ckiai, 1 ≤ k ≤M,

and by appealing to remark 1.3 of V.I.2 of [10] we have that
∑M

i=1 λi ≥
∑M

i=1〈| bi |2〉.
Hence, ∑

i>M

λi ≤
∑
i>M

〈| bi |2〉,

since it also holds that
∑

i λi =
∑

i〈| bi |2〉, 1 ≤ i ≤ dimH.
Next, we wish to find out the relationship between the operator T and the covari-

ance matrix K defined in (17). Since we are working with snapshots of the numerical
solution, we restrict the Hilbert space on which T is defined to a discrete finite dimen-
sional subspace Hp,∆t ⊂ H defined as

Hp,∆t = {v = (v1, ..., vp ∈ Rp :

p∑
i=1

∆τi | vi |2<∞},

where τi ∈ [0, T ] are the time instants at which the snapshots of the numerical
solution are stored, ∆τi = τi − τi−1 and vi = v(τi). The inner product in Hp,∆t is
defined by

(a, b) =

p∑
i=1

∆τia
ibi; a, b ∈ Hp,∆t.

In relation with the average operator introduced in (23) we take I = D, so that for
all f ∈ L1(D) we have that

〈f〉 =

∫
D

fdx.

Thus, given U ≡ (u1(x), ....up(x)) ∈ L2(I,Hp,∆t) and such that for 1 ≤ i ≤
p, ui(x) ∈ L2(D) we have that

(Ta, b) = 〈(U, a)(U, b)〉 =
∫
D
(
∑p

j=1 ∆τju
j(x)aj)(

∑p
i=1 ∆τiu

i(x)bi)dx

=
∑p

i=1

∑p
j=1 ∆τi∆τjb

iaj(
∫
D
ui(x)uj(x)dx)

=
∑p

i=1 ∆τib
i(
∑p

j=1 ∆τjKija
j) = (Ka, b).

So that, the covariance matrix K is the matrix of the operator T. We state this
result in the following proposition.

Proposition. The covariance matrix K defined in (23) is the matrix associated
to the operator T defined in (24).

Application of the POD technique to the barotropic ocean
model

In order to compute a low dimensional dynamical system equivalent to (1) and (2),
we proceed in this section to apply the POD technique as a post-processing procedure



to the finite element semi-Lagrangian solution of (1) and (2) for A = 1000m2s−1,
800m2s−1, 600m2s−1, 500m2s−1 and 400m2s−1. We shall start storing snapshots of the
vorticity and stream-function solution after the spin-up time of the model. Looking
at the energy graphs of the numerical solutions we notice that for any value of A the
solution lies in the attractor after 8 years of simulation; so that, taking this value as
the spin-up time of the model, we store snapshots of the vorticity and stream-function
solution every 5 days for a time period of 1000 days, this makes a total of 200 snapshots
for each value of A. Following the steps of Section 5.1, we compute for each A an
orthonormal basis {ϕωi }

p∗

i=1 and set

ωh(x, t) = ωh(x) +
∑p∗

i=1 ai(t)ϕ
ω
i

ψh(x, t) = ψh(x) +
∑p∗

i=1 ai(t)ϕ
ψ
i ,

(31)

where ∆hψh(x) = ωh(x), ∆hϕ
ψ
i = ϕωi , with ∆h : Vh0 → Vh0 being the discrete

Laplacian operator. The unknowns {ai(t)} are determined by substituting (31) into
(1) and (2) and performing a Galerkin projection on the subspace generated by the
orthonormal basis {ϕωi }

p∗

i=1. By doing so we obtain

dai
dt

=

p+∑
j,k=1

aj(t)ak(t)Djki +

p+∑
j=1

ajQji +Ri, 1 ≤ i ≤ p∗. (32)

where
Djki = −(J(ϕψj , ϕ

ω
k ), ϕ

ω
i )

Qji = Aji +Bji − βCji + AEji − γδji

Ri =
(
−J(ψh, ωh)− β ∂ψh

∂x
+ A∆hωh − γωh + F, ϕωi

)
,

with
Aji = −(J(ψh, ϕ

ω
j ), ϕ

ω
i )

Bji = −(J(ϕωj , ωh), ϕ
ω
i )

Cji =

(
∂ϕψj
∂x
, ϕωi

)
Eji = (∆hϕ

ω
j , ϕ

ω
i )

Iji = (ϕωj , ϕ
ω
i ) = δji.

To determine ai(t) we solve (32) by a numerical method. In the results we show
below we have employed the Runge-Kutta Fehlberg4(5) method.

Numerical examples

We show here POD results obtained by solving (32) with different values of A. As we
mentioned above, in each experiment we have collected 200 snapshots of the vorticity
solution at intervals of 5 days after the spin-up time (about 8 years) of the experiment.
Table 2 gives information of the fraction of the total energy represented by truncating
the set of POD eigenfunctions for A = 800m2s−1
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A = 800m2s−1 Total Kinet. Energy
p∗ = 10 99.96445538%
p∗ = 20 99.99992594%
p∗ = 30 99.99999986%

Table 2.

Thus, we see that the first 10 eigenfunctions (or modes) are able to represent the
dynamics up to a level of 99.96445538% of the total kinetic energy. Figure 5 shows the
energy graphs of the direct numerical solution and of the POD solution for 10, 20 and
30 modes.

We notice the good agreement between the direct numerical solution and the POD
one even with just only 10 modes. For A = 600 things are a little bit different. The
dimension of the attractor is larger, so that we expect to need more modes representing
the dynamics. This is confirmed by the results shown in Table 3.

A = 600m2s−1 Total Kinet. Energy
p∗ = 10 99.24121041%
p∗ = 30 99.99898548%
p∗ = 50 99.99998724%
p∗ = 60 99.99999696%

Table 3.

Figure 6 shows the energy graphs of the direct numerical solution and of POD solu-
tions for 10, 30 and 60 modes. We see that 10 modes do not give a good representation;
however, the POD solution with 60 modes is very good, although 30 modes are also
able to give an acceptable solution.

Table 4 and Figure 7 give the POD results for A = 400m2s−1
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A = 400m2s−1 Total Kinet. Energy
p∗ = 20 98.86859836%
p∗ = 40 99.84382625%
p∗ = 80 99.99481342%
p∗ = 90 99.99788447%

Table 4.

In this table we notice that the dynamics of the quasi-periodic solution requires a
number of POD modes much higher than that of the periodic dynamics just only to
approximate 99.998% of the total kinetic energy. In Figure 7 we see that in order
to get an acceptable POD solution we need 80 modes. We show in Figure 8 the bi-
furcation diagram of the model which is obtained by using AUTO97 to the integrate
(32) with the horizontal eddy viscosity coefficient A being now the control parameter.
The POD orthonormal basis used for this purpose has been generated by combining 14
POD eigunfunctions of the basis for A = 800m2s−1 with 30 eigunfunctions of the basis
for A = 500m2s−1 plus 1 POD eigunfunction of the basis for A = 1000m2s−1. In the
diagram, drawn (dash) branches denote stable (unstable) states, whereas bifurcation
points are indicated by square marks for Hopf bifurcation points, and triangular marks
for critical points. The steady solution becomes unstable and undergoes a Hopf bifur-
cation at A = 881.71. The periodic solution is not structurally stable and experiences a
new Hopf bifurcation at A = 410.23. to become a quasi-periodic solution, which neither
is structurally stable. Thus, as A decreases the quasi-periodic solution passes through
two critical points at A = 314, 77, in which the solution reverses, and at A = 297.77.
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1 Departamento de Matemática Aplicada. Universidad Complutense de Madrid. Ciudad
Universitaria, 28040 Madrid. rbermejo@amb-to.uclm.es
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